Phase-response curves and synchronized neural networks.
نویسندگان
چکیده
We review the principal assumptions underlying the application of phase-response curves (PRCs) to synchronization in neuronal networks. The PRC measures how much a given synaptic input perturbs spike timing in a neural oscillator. Among other applications, PRCs make explicit predictions about whether a given network of interconnected neurons will synchronize, as is often observed in cortical structures. Regarding the assumptions of the PRC theory, we conclude: (i) The assumption of noise-tolerant cellular oscillations at or near the network frequency holds in some but not all cases. (ii) Reduced models for PRC-based analysis can be formally related to more realistic models. (iii) Spike-rate adaptation limits PRC-based analysis but does not invalidate it. (iv) The dependence of PRCs on synaptic location emphasizes the importance of improving methods of synaptic stimulation. (v) New methods can distinguish between oscillations that derive from mutual connections and those arising from common drive. (vi) It is helpful to assume linear summation of effects of synaptic inputs; experiments with trains of inputs call this assumption into question. (vii) Relatively subtle changes in network structure can invalidate PRC-based predictions. (viii) Heterogeneity in the preferred frequencies of component neurons does not invalidate PRC analysis, but can annihilate synchronous activity.
منابع مشابه
Bayesian estimation of phase response curves
Phase response curve (PRC) of an oscillatory neuron describes the response of the neuron to external perturbation. The PRC is useful to predict synchronized dynamics of neurons; hence, its measurement from experimental data attracts increasing interest in neural science. This paper introduces a Bayesian method for estimating PRCs from data, which allows for the correlation of errors in explanat...
متن کاملThe Utility of Phase Models in Studying Neural Synchronization
Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator th...
متن کاملPredicting synchronized neural assemblies from experimentally estimated phase-resetting curves
Neural-network dynamics frequently organize in assemblies of synchronized neurons that are thought to encode and store sensory information. We have investigated the mechanisms leading to the emergence of these neural assemblies with models of coupled oscillators. In particular, we used experimentally estimated phase-resetting curves (PRC) of real neurons (mitral cells) to realistically describe...
متن کاملAnalysis of Synchronization Between Two Modules of Pulse Neural Networks with Excitatory and Inhibitory Connections
To study the synchronized oscillations among distant neurons in the visual cortex, we analyzed the synchronization between two modules of pulse neural networks using the phase response function. It was found that the intermodule connections from excitatory to excitatory ensembles tend to stabilize the antiphase synchronization and that the intermodule connections from excitatory to inhibitory e...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 365 1551 شماره
صفحات -
تاریخ انتشار 2010